References

1
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015).
2
J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi, M. D. Hoffman, and R. A. Saurous, TensorFlow Distributions, CoRR abs/1711.10604, (2017).
3
J. Eschle, A. Puig Navarro, R. Silva Coutinho, and N. Serra, Zfit: Scalable Pythonic Fitting, SoftwareX 11, 100508 (2020).
4
Processing: What to Record? - CERN Accelerating Science, https://home.cern/science/computing/processing-what-record (accessed Nov. 16, 2020).
5
M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, Ann. Math. Statist. 27, 832 (1956).
6
T. Duong, Kernel Density Estimation in Python, https://www.mvstat.net/tduong/research/seminars/seminar-2001-05/ (accessed Nov. 16, 2020).
7
M. Lerner, Kernel Density Estimation in Python, https://mglerner.github.io/posts/histograms-and-kernel-density-estimation-kde-2.html (accessed Nov. 16, 2020).
8
K. Cranmer, Kernel Estimation in High-Energy Physics, Computer Physics Communications 136, 198 (2001).
9
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R'ıo, M. Wiebe, P. Peterson, P. G'erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Array Programming with NumPy, Nature 585, 357 (2020).
10
T. Odland, Comparison | KDEpy, https://kdepy.readthedocs.io/en/latest/comparison.html (accessed Nov. 16, 2020).
11
A. Gramacki, FFT-Based Algorithms for Kernel Density Estimation and Bandwidth Selection, in Nonparametric Kernel Density Estimation and Its Computational Aspects (Springer, 2018), pp. 85–118.
12
Z. I. Botev, J. F. Grotowski, D. P. Kroese, and others, Kernel Density Estimation via Diffusion, The Annals of Statistics 38, 2916 (2010).
13
D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods, Vol. 706 (John Wiley & Sons, 2013).
14
M. P. Wand and M. C. Jones, Kernel Smoothing (Crc Press, 1994).
15
D. Hofmeyr, Fast Exact Evaluation of Univariate Kernel Sums, IEEE Trans. Pattern Anal. Mach. Intell. 1 (2019).
16
Scipy.stats.gaussian_kde — SciPy V1.5.4 Reference Guide, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html (accessed Nov. 16, 2020).
17
Kernel Density Estimation — Statsmodels, https://www.statsmodels.org/devel/examples/notebooks/generated/kernel_density.html (accessed Nov. 16, 2020).
18
Sklearn.neighbors.KernelDensity — Scikit-Learn 0.23.2 Documentation, https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html (accessed Nov. 16, 2020).
19
T. Odland, KDEpy, https://github.com/tommyod/KDEpy (accessed Nov. 16, 2020).
20
J. VanderPlas, Kernel Density Estimation in Python, https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ (accessed Nov. 16, 2020).
21
R. P. Brent, An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, The Computer Journal 14, 422 (1971).
22
D. P. Hofmeyr, Fast Kernel Smoothing in R with Applications to Projection Pursuit, arXiv:2001.02225 [stat] (2020).
23
B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC, Boca Raton, 1998).